Improved Perturb and Observation Method Based on Support Vector Regression
نویسندگان
چکیده
منابع مشابه
Regression Based on Support Vector Classification
In this article, we propose a novel regression method which is based solely on Support Vector Classification. The experiments show that the new method has comparable or better generalization performance than ε-insensitive Support Vector Regression. The tests were performed on synthetic data, on various publicly available regression data sets, and on stock price data. Furthermore, we demonstrate...
متن کاملSupport vector regression based on data shifting
In this article, we provide some preliminary theoretical analysis and extended practical experiments of a novel regression method proposed recently which is based on representing regression problems as classification ones with duplicated and shifted data. The main results regard partial equivalency of Bayes solutions for regression problems and the transformed classification ones, and improved ...
متن کاملMultiscale Support Vector Regression Method On Spheres with Data Compression
In this manuscript, we investigate the multiscale support vector regression (SVR) method with data compression for approximation of functions on the unit sphere. The data are obtained at scattered sites on the sphere and may contain noise. The Vapnik ε-intensive loss function, which has been well-developed in learning theory, is introduced to obtain a local regularized approximation at each ste...
متن کاملOn implicit Lagrangian twin support vector regression by Newton method
In this work, an implicit Lagrangian for the dual twin support vector regression is proposed. Our formulation leads to determining non-parallel ε –insensitive downand upbound functions for the unknown regressor by constructing two unconstrained quadratic programming problems of smaller size, instead of a single large one as in the standard support vector regression (SVR). The two related suppor...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2019
ISSN: 1996-1073
DOI: 10.3390/en12061151